logo
  • Investment Strategies

    Investment Options

    • Alternatives
    • Beta Strategies
    • Equities
    • Fixed Income
    • Multi-Asset Solutions

    Capabilities & Solutions

    • ETFs
    • Pension Strategy & Analytics
    • Global Insurance Solutions
    • Outsourced CIO
    • Sustainable Investing
  • Insights

    Market Insights

    • Market Insights Overview
    • Eye on the Market
    • Guide to the Markets
    • Guide to Alternatives
    • Market Updates
    • Guide to China

    Portfolio Insights

    • Portfolio Insights Overview
    • Alternatives
    • Asset Class Views
    • Currency
    • Equity
    • ETF Perspectives
    • Fixed Income
    • Long-Term Capital Market Assumptions
    • Sustainable Investing
    • Strategic Investment Advisory Group

    Retirement Insights

    • Retirement Insights Overview
    • Essential Elements of a Sound Retirement System
    • Building Better Retirement Portfolios
  • Resources
    • Center for Investment Excellence Podcasts
    • Insights App
    • Library
    • Webcasts
    • Multimedia
    • Morgan Institutional
  • About us
  • Contact Us
Skip to main content
  • English
  • Role
  • Country
  • Morgan Institutional
    Search
    Search
    Menu
    You are about to leave the site Close
    J.P. Morgan Asset Management’s website and/or mobile terms, privacy and security policies don't apply to the site or app you're about to visit. Please review its terms, privacy and security policies to see how they apply to you. J.P. Morgan Asset Management isn’t responsible for (and doesn't provide) any products, services or content at this third-party site or app, except for products and services that explicitly carry the J.P. Morgan Asset Management name.
    CONTINUE Go Back
    1. Eye on the Market 12th Annual Energy Paper

    • LinkedIn Twitter Facebook

    LISTEN AND SUBSCRIBE TO MICHAEL CEMBALEST

    In this podcast series, Michael Cembalest, Chairman of Market and Investment Strategy offers timely commentary on the economy, marekts and investment portfolios
     

    Listen on Apple Podcasts

    Subscribe to RSS Feed

    Read more by Michael Cembalest

    The Elephants in the Room

    We start with a summary of the energy landscape, including the energy crisis in Europe, the recovery in the oil & gas sector and a warning label on industrial electrification and carbon sequestration forecasts. We continue with three topics on electrification, which is the foundation of many deep decarbonization plans: electric vehicle adoption by gasoline super-users, the transmission quagmire and bans on combustion of fossil fuels for heating in favor of electric heat pumps. We then conduct a detailed review of the hydrogen economy, whose liftoff is still many years away. We conclude with deep decarbonization plans for China, whose carbon intensity and emissions levels are the highest in the world.

    Electrification as a means to decarbonize energy use

    Download Electrification pdf
    1. Transmission: The US transmission quagmire shows little sign of changing. Interconnection queues are swamped, and both landowners and environmental groups are blocking critical renewable projects in the absence of Federal intervention

    2. Gasoline super-users: The top 10% of US gasoline super-users consume almost one third of all US gasoline. Are there better ways of incentivizing them to switch to electric vehicles than current policy? And what is the impact of rising metals prices on EV battery costs and supply chains?

    3. Fossil fuel bans, heat pumps and electrification of winter heating: What will happen to transmission grids at times of peak loads if no backup heating systems are in place? And what about the pace of change if bans on fossil fuels only apply to new buildings?

    Whydrogen?

    Download Whydrogen pdf

    Hydrogen use cases may be much narrower than advertised, and the timeline is a very long one. Optimists see multiple hydrogen adoption pathways in power generation, pipelines, steel production, home heating, marine shipping, rail and aviation; we take a closer and more skeptical look.

    Listen to Podcast

    The Elephants in the Room

    2022/05/02

    We start with a summary of the energy landscape, including the energy crisis in Europe, the recovery in the oil & gas sector and a warning label on industrial electrification and carbon sequestration

    Show Transcript Hide Transcript

    [START RECORDING]

     

    FEMALE VOICE:  This podcast has been prepared exclusively for institutional, wholesale professional clients and qualified investors only, as defined by local laws and regulations.  Please read other important information which can be found on the link at the end of the podcast episode.

     

    MR. MICHAEL CEMBALEST:  Greetings everybody, this is Michael Cembalest from J.P. Morgan Asset Management.  This is the 2022 Eye on the Market Energy Paper Podcast.  We’ll actually be doing a series of podcasts with each week’s installment dealing with different topics from this year’s paper.

     

    The events taking place in Europe underscore some of the unifying principles of this annual energy paper effort since its inception 12 years ago.  And those three principles are number one, energy transitions differ a lot from transitions in technology, healthcare, biotech, and other sectors.  We have a chart in here showing this, how the speed of disruption is very different in energy than it is from other things like broadband and smartphones and rideshare and things like that.

     

    The second concept is that decarbonization of electricity is well underway, but decarbonization of industrial production, transportation, and heating lag much further behind.  That’s a really important concept in understanding where we are on this whole renewable energy transition. 

     

    And the third principle that I was kind of writing about for a while in the wilderness is that countries that reduce their own production of fossil fuels under the assumption that renewables can quickly replace them face substantial economic and geopolitical risks.  That now seems obvious given what’s happened in Europe, but it wasn’t obvious at all over the last decade.

     

    So as I mentioned, we’re going to do a few podcasts on this topic, and this podcast is going to be dealing with the executive summary of the paper, which is a discussion of some of the most important issues in the global world of energy issues.  This is really meant to accompany the paper.  It’s hard to do this without charts, so I’m not going to discuss everything, but I hit the main points here.  You should dial into the webcast or read the paper itself if you really want to see this come to life.

     

    Anyway, what are some of the most important things I’m going to discuss on this particular podcast?  Well, let’s start with three things.  Why is the world still so reliant on fossil fuels, which still account for somewhere between 80 and 85% of energy consumption globally?  Even in Europe, which has really been a leader in terms of renewable energy, they are 70% reliant on fossil fuels.

     

    So three things.  Number one, you probably read about this concept called levelized costs.  I wouldn’t say ignore them, but they’re not great barometers of the pace of change.  The levelized cost that compares wind and solar on the margin to fossil fuels I consider a misleading measure, because these cost estimates rarely reflect the actual cost that you need to have a grid with a lot of renewable energy on it, which is a lot of cost associated with extra transmission, ‘cause you have to create large renewable coverage areas, for example, getting wind power from Texas to St. Louis or Tallahassee.  You also have to include the cost of backup thermal power required for times when renewable generation is low.  And if you’re not going to do that, you’ve got to include the cost of utility-scaled battery storage.  So I remain amazed at how much time people spend on levelized costs when they’re not really fully loaded for a real actual live economy. 

     

    Second, as I mentioned, the benefits of grid decarbonization are great, but they’re limited by the fact that we haven’t really electrified at all industrial energy use, transportation and have only electrified heating a little bit.  And that’s one of the reasons why it still looks like the world may be 60 to 70% reliant on fossil fuels all the way out to 2050.

     

    And then one of the third issues to pay attention to is the energy divide between the developed and the developing world.  If you look out over the next ten years, it looks like Europe, Japan, and the United States are all going to use a lot less energy over the next three decades than even they did over the prior one decade.  That’s great.  But over the last 25 years, the developed world has shifted a lot of its carbon-intensive manufacturing of steel and cement and plastics to the developing world.  So for all the congratulatory backslapping taking place in the developed world for lowering its energy consumption, a lot of that simply is a byproduct of having outsourced a lot of carbon and energy-intensive manufacturing.

     

    Two countries that are, when you look at them, actually highly reliant, in places like China, India, Vietnam, and Indonesia, highly reliant on coal as a share of their energy.  So those are the three big topics from my perspective that explain why the world is still so reliant on fossil fuels: the misleading barometers of levelized costs, the low level of decarbonization outside the grid, and then this shift in the developed and the developing world. 

     

    So where do we go from there?  Well, there’s a Mark Twain quote of, that goes like this: reports of my death are greatly exaggerated.  And I use that this year on a chart that shows the recovery of fossil fuel stocks and how they’ve massively outperformed renewable energy stocks since really the middle of 2020.  Some of the craziest, weirdest things I heard about, ever heard about energy, were said during the spike in 2019 and 2020 in those renewable energy stocks, and the short version went something like this: fossil fuels are dead money since the renewable transition is irreversible, gathering steam, and rapidly displacing them. 

     

    I would agree that the renewable transition is irreversible, but the rest of it, not so much.  In our energy papers over the last two years, we argued that the stars were aligning for a substantial rebound in oil and gas profitability, and the primary reason being that the poor oil and gas stock price performance was primarily the result of management decisions to focus on market share and revenue and not on profits.  And global gas and coal consumption in 2021 are already higher than pre-COVID levels, and oil consumptions should surpass pre-COVID levels sometime this year. 

     

    And even more importantly, looking further out, these aren’t my forecasts, a lot of the forecasts that you see from Wood Mackenzie, the Energy Information Agency, the International Energy Agency, and BP show oil demand, global oil demand in 2030, in 2040, they’re not that different from levels of oil demand today.  We also estimate that the US might need roughly the same amount of natural gas in 2035 as it consumes today.  So that’s a very different picture than the one that, than the market narrative that you were hearing 18 to 24 months ago.

     

    Of course, the big issue in energy right now is what’s taking place in Europe, which is paying a really steep price for its reliance on Russian energy.  Essentially, Europe miscalculated.  It reduced its own production of fossil fuels a lot faster than it reduced its own consumption of fossil fuels, and they are now caught in the vice of Russian energy reliance.  The ramifications I think are just beginning to dawn on me and other people, which is a likely recession in Europe, energy consumption is going to displace non-energy goods and services in Europe, a lower rate of growth in Europe, less competitiveness of their exported goods, they may even require curtailment of industrial production in steel, fertilizer, and cement if they really go cold turkey from Russian energy, higher food prices, and political tensions domestically as some of the anti-establishment candidates take advantage of the household distress.  Of course, the latest news is that Russia cut off Poland and Bulgaria from natural gas shipments ‘cause they refuse to pay in rubles.

     

    We have some charts here that show the history of Europe’s reliance on Russian energy, going all the way back to 1980, and comparing Europe, China, US, and Russia in terms of energy dependence and independence.  These are some pretty paramount issues right now, and you’ve got to see the electricity and natural gas price gaps between the US and Europe, because you have to see them to believe them.  At one point a couple months ago over the winter, natural gas in Europe was $30 compared to 5 to $6 of BTU in the US, and the electricity gaps were similar.

     

    I will remind everybody that in 2012 during the presidential campaign in the US, Mitt Romney tried to warn everybody about what Russia was really all about, and he was first mocked on the left for doing so, and then you all know what happened later on the right and their quasi-embrace of Russia that took place during the 2016 presidential campaign. 

     

    So can Europe quickly change course?  It’s real difficult.   The plan that’s been announced includes a very rapid uptake in wind and solar, where in real life, deployment is constrained by transmission delays and interconnection cues and things like that, electrification of home heating that so far is mostly a Scandinavian phenomenon.  Building out more LNG import capacity, it’s called regasification capacity, that takes years and billions of dollars to do.  And the most ironic one that came from the IEA was recommending greater use of nuclear power at a time when Europe is basically, outside France, abandoning it. 

     

    So Europe is not the only region really at risk here.  And one of the charts you probably have seen before is that on a global basis, capital spending on oil and gas production is declining, but oil and gas consumption is not.  It’s basically back to where it was before COVID.

     

    So countries are faced with three broad choices.  You either ramp up your own domestic production of fossil fuels, if you have them, to avoid a geopolitical and economic trap.  You rely on countries like Russia, Iran, Qatar, and the Saudis and Venezuela for imported energy.  Or you confront the obstacles to a faster renewable transition head on. 

     

    And the last option is what a lot of people want, what a lot of us all want, but it’s not something you’re going to accomplish by feel-good policies like cutting off sources of fossil fuel financing or university divestment or stuff like that.  If you really want to make this happen, policymakers have to step in and curtail the ability of local communities to delay or cancel decarbonization and the transmission projects that are associated with them.  It’s happening all across the United States, and it’s happening in spades in the most progressive states in the country, which is a topic we’ll talk about in the next podcast.

     

    Policymakers would also have to build consensus for an economy-wide price on carbon.  And without those two things, without confronting those states’ rights issues and the price for carbon, we’ll all remain stuck in the slow lane where we are now, despite the ESG policies and corporate carbon disclosure requirements and stuff like that.  A revival of the Build Back Better bill in the US could help a little bit, but there’s no news to report just yet. 

     

    So over the next two or three podcasts, we’ll be getting into the details on this year’s topics.  Before we get started though, we had a page in here to just remind you of two topics from last year that we summarized, because they’re critical to understanding the decarbonization challenge. 

     

    The first one is the challenges of electrifying industrial energy use.  The global industry uses more energy than any other sector, meaning homes, businesses, transportation, et cetera.  And electricity is a very, very small part of industrial energy use.  In the US it’s been hovering between 10 and 15% since 1980 and hasn’t really changed.  And that’s a testament to how hard it is to electrify industrial energy use.  And of course, electrifying it would then allow you to decarbonize it.  But if it’s hard to electrify, it’s hard to decarbonize. 

     

    And the big issues are industrial production often relies on ways to heat energy, which is lost during electrification, which makes it a lot more expensive to electrify it.  And a lot of industrial products like plastics and cement and ammonia aren’t metallic to begin with, which makes electrification harder.  So there’s a summary of that. 

     

    And then I know people hate to read this, but one of the highest, one of other topics we summarized is the highest ratio in the world of science, which is the number of academic papers written on carbon sequestration divided by the actual amount of carbon sequestration, which at last count was 0.1% of global emissions.  The infrastructure required to do this is enormous.  And I’m sorry, but the energy and materials requirements for things like direct air carbon capture are basically unworkable.  If you think, capturing 20% of global CO2 through direct air carbon capture would require 40% or more of all of the electricity in the world.  This is clearly an absurd proposition, and I’m not going to waste a lot of time on it.

     

    So this year’s paper is called the Elephants in the Room.  And it’s a phrase that refers to glaring, glaring issues that need to be resolved.  So what are we going to be talking about?  Well, there’s three topics on electrification, the transmission grid, clogged interconnection cues, things like that.  Then we’re going to be talking about electric vehicle adoption and what policies might be needed to get US gasoline super-users, the one, that that small cohort of people consuming a third of the gasoline, how can we get them to switch to electric vehicles more quickly?

     

    We’re also going to take a look at how rising metals prices affect battery cost.  And then we’re going to conclude the electrification section with a look at home heating and specifically these new bans on onsite combustion of natural gas, propane, and fuel oil in new buildings.  So far, mostly this is a Scandinavian phenomenon, but it’s coming to a city or country near you. 

     

    And then after that, the next podcast is going to take a very deep dive into the hydrogen economy, which is a concept that really is still in its infancy, and we’re going to take a close look at the use cases that we think are a lot narrower than advertised once you look at costs around your proficiency, materials handling, competition from electrification, things like that. So that’s enough for this week.  Thank you very much for listening, and we’ll see you next time.

     

    I do want to make one quick, brief comment before I go.  One of the topics that I’m not writing about this year is the climate benefits of the switch from coal to natural gas.  That’s still very much a work in progress.  I don’t think there’s any disagreement that on a pure CO2 basis, gas has a lower emissions rate than coal.  I mean that’s just kind of empirically true from a chemical perspective.  The issue is these methane leakage rates.  The EPA claims that they have fallen to just 1% of total production, but most of the climate science people I talk to don’t have a lot of confidence in those EPA numbers.  And when they conduct their own measurements, they find that they’re understated by 50 to 100%, maybe more.  So that methane, because if its concentration component as a GHG, that would offset a lot the assumed benefits associated with coal to gas switching.  So that is still unsettled science, from what I can tell.  Anyway, thanks for listening, and I will speak to you all next time.  Thank you, bye.

     

    FEMALE VOICE:  Mike Cembalest’s Eye on the Market offers a unique perspective on the economy, current events, markets, and investment portfolios, and is a production of J.P. Morgan Asset and Wealth Management.  Michael Cembalest is the Chairman of Market and Investment Strategy for J.P. Morgan Asset Management and is one of our most renowned and provocative speakers.  For more information, please subscribe to the eye on the market by contacting your J.P. Morgan representative.  If you’d like to hear more, please explore episodes on iTunes or on our website.

     

    This podcast is intended for informational purposes only and is a communication on behalf of J.P. Morgan Institutional Investments Incorporated.  Views may not be suitable for all investors and are not intended as personal investment advice or a solicitation or recommendation.  Outlooks and past performance are never guarantees of future results.  This is not investment research.  Please read other important information which can be found at www.JPMorgan.com/disclaimer-EOTM.

     

    [END RECORDING]

    The Elephants in the Room - Electrification

    2022/05/10

    We start with a summary of the energy landscape, including the energy crisis in Europe, the recovery in the oil & gas sector and a warning label on industrial electrification and carbon sequestration

    Show Transcript Hide Transcript

    [START RECORDING]

     

    FEMALE VOICE:  This podcast has been prepared exclusively for institutional, wholesale professional clients and qualified investors only as defined by local laws and regulations.  Please read other important information, which can be found on the link at the end of the podcast episode. 

     

    MR. MICHAEL CEMBALEST:  Good afternoon, everybody.  This is Michael Cembalest with the J.P. Morgan Eye on the Market podcast.  This particular podcast is the second of four podcasts that we’re doing on our annual energy paper.  This one is on the issue of electrification and specifically the issues of transmission and electric vehicles.  The next podcast will be on electrification of home heating through heat pumps, and then the last one will be on our deep dive look into the hydrogen economy or the lack thereof.

     

    So let’s get started on this concept of electrification.  Why is everybody so focused on this as a deep decarbonization agenda item?  Well, it has to do with the fact that if you can electrify something such as converting from an internal combustion engine car to an electric vehicle, and then you follow up by decarbonizing the grid by adding wind, solar, hydro storage, possibly nuclear or even, as some people argue, national gas with carbon capture, which we’re very skeptical of, you can then decarbonize that energy use.  So just to be clear, first you electrify it, then you decarbonize the grid, and then you’ve decarbonized your energy use.  Sounds very simple.  Of course, it is nothing, it is not simple at all. 

     

    Over the last 20 years, the share of electricity as a percentage of total energy use has risen by just 2 to 3% in most countries, which is a very slow rate of change.  We have a chart in here showing the most large and midsized countries use electricity for something like 15 to 20% of their overall primary energy consumption, and that those numbers have only risen by 2 to 3% in the last 20 years.  And the only countries that are higher than that are places like Iceland and Norway and Sweden and Switzerland, places that have abundant hydro and geothermal power, or they’re very small countries that rely on the outside world.  So remember, a lot of what you read from energy futurists is about this electrified world as a blueprint for a world that doesn’t really have a proof of concept yet.  

     

    So let’s get started on this transmission issue.  We’ve been writing about it for a few years.  The bottom line is that there is an enormous gap in between the amount of transmission that we have, transmission capacity measured as gigawatt miles, and what a lot of the deep decarbonization plans require.  And it’s just very hard to build new transmission.  Transmission grid in the United States has grown at 2% a year since 1978, and only 1% a year over the last five years.  And that’s nowhere near the robustness of a grid that you would need to increase the level of electrification of energy use.

     

    And in last year’s paper, we covered the saga of this project that was supposed to bring hydropower from Quebec to Massachusetts, that was blocked first by New Hampshire and then by Maine.  And if the most progressive region of the country can’t figure out how to swap natural gas combustion for cheaper and cleaner Canadian hydropower, that’s a huge problem.

     

    And when I speak to net zero and Green New Deal advocates, a lot of them stare off into space on this topic rather than confronting the state’s rights and eminent domain issues head on.  And unfortunately, in my opinion, it tells me that they’re not really that serious about addressing the real world obstacles, real world obstacles to deeper decarbonization, ‘cause that’s one of the real world issues that has to be confronted.

     

    That project, called Northern Pass, from Quebec to Massachusetts, which has now been permanently scraped, is not the exception.  Transmission projects are being blocked all across the country by landowners and even by conservation groups that are that are objecting to the very electrification that they intensely lobby for when they get interviewed and when they write academic papers.  I read this paper from lawyers at the Illinois Environmental Law and Policy Center explaining why they were litigating to block a wind transmission project. And it was the equivalent of looking at somebody contort themselves into a pretzel.  

     

    So Iowa has blocked projects to bring wind to Illinois and Wisconsin.  Arkansas blocked the project from Oklahoma to the Southeastern US.  Missouri blocked projects from Kansas to Indiana.  Colorado has blocked projects.  Oddly enough, in Florida, Governor DeSantis and the state legislature are one of the few places that passed laws preventing local entities from blocking solar projects and some other renewable projects.  How ironic is that?

     

    Now some Republicans blame Democrats for this, and there’s a quote in here we have from Pete Stauber, who is a Republican congressman in Minnesota, saying look, Democrats may not realize that allowing environmental groups to sue over every infrastructure project they didn’t like might not have been the best idea.

     

    Just as a bit of background, if you look around you, you are benefitting from the application and widespread use of something called federal eminent domain, which is when the federal government says look, I understand there may be local objections to this, but this is needed for the greater good and it’s going to happen.  That’s why we have railroads, that’s why we have national parks, that’s why we have national gas pipelines, airports, Naval stations, the interstate highway system that Eisenhower built, fiber-optic cables.  Eminent domain was used broadly over the last 100 years to create all of those things. 

     

    But it’s not being used today broadly by the federal government on the transmission issue, and there’s a variety of legal reasons why that’s the case.  We describe them here, but the bottom line is Congress tried to pass the energy, they passed the Energy Policy Act of 2005, which was supposed to give the federal government more siting authority for these projects, but it got challenged in courts and has been stymied ever since.

     

    The other challenge facing the grid is that even when the local communities and environmental groups aren’t blocking it, they then have to get connected to the grid itself.  And there’s a thing called the interconnection queue, queue meaning Q-U-E-U-E, where you have to line up and apply to be added to the grid itself.  And that used to be a pretty simple process when generators were adding large nuclear and natural gas plants.  But now hundreds of small renewable projects, solar, solar and storage, wind are all swarming the queue at the same time.  A lot of these government and local agencies are understaffed. It’s a very inefficient process.  It can take you up to four years to finally be told yes, we’re going to approve you and here’s where you’re going to slot into and how you’re going to connect to the grid and how much it’s going to cost you. And we have some data in here showing that something like only 20 to 30% of projects in the interconnection queues reached commercial operation from over the last decade.  And the numbers were even a little bit lower for wind and solar.

    So that’s the other challenge, is that even when people are not objecting to these projects, it’s very complicated with the United States grid and the process used to improve projects to get these things added.  The amount of solar and wind capacity in the queues in aggregate across the country are many multiples of existing wind and solar capacity.  What subset of those will eventually be put into commercial operation, nobody really knows because they have to run the gauntlet of local landowner and environmental objections, and then they have to go through this interconnection process, which is extremely inefficient.

     

    And that’s the challenge about this whole electrification concept, which is a lot of people express support for it because it’s a pathway to decarbonization, but then are not willing to sit down and, or sorry, stand up for the things that would be needed to make that happen, which is going to require some combination of consensus-building at a national level, some cabinet-level policies, and some Congressional policies to make sure that these transmission projects can get built.

     

    The gap between the status quo and the idealized version of the transmission grid is almost as wide as the idealized perception of carbon sequestration and what’s actually happening on the ground now, which is .1% of US and European emissions are sequestered every year.  I mean, that’s the biggest gap between perception and reality, but the issues with transmission are pretty close behind.

     

    So where does that leave Massachusetts now that Maine and New Hampshire killed their access to low-cost Canadian hydropower?  Well, right now they’re having to import electricity from neighboring states, most of which is not very green because it’s coming from places where it’s based on natural gas.  And if they’re thinking about offshore wind, which is what Massachusetts appears to be doing, that looks like it’s going to be expensive.  Average wholesale electricity prices in Massachusetts last year were $50 a megawatt hour, and the recent bids for offshore wind in Massachusetts were $70 to $100, so almost double.  And it looks like Massachusetts has a long-term plan for offshore wind adding up to 50% of the state’s electricity consumption.  We’ll see if that happens.

     

    But across the Eastern seaboard, people are giving up on some of these Canadian hydropower projects and looking to offshore wind itself, which is going to be a pretty expensive way to do it.  So the bottom line is a lot of work is going to have to get done on this transmission issue, which we consider to be maybe the single largest roadblock in the entire renewable energy transition.

     

    I want to spend just a few minutes closing this podcast with discussions about electric vehicles.  So the EV sales are gathering steam.  Last year they were almost 9% of total vehicle sales.  That’s a big jump from the prior year, where it’s like 4, 4.5%.  Now to be clear, that’s the percentage of that year’s sales.  EVs still represent just 1 to 2% of the fleet on the road.  And remember today’s cars last on average 12 years, which is double the average life of a car let’s say a long time ago when I was in college.  So that just means that it’s going to take a long time for vehicle sales, electric vehicle sales, to end up having a big impact on the percentage of EVs and the total fleet.

     

    Anyway, the US trailed a lot of countries.  The US was just 4.5% last year EVs.  And lower mileage trucks, light trucks and SUVs are by far the most popular cars in the United States.  The Ford F-Series, Ram pickup trucks, Chevy Silverado, Jeep Grand Cherokee, cars like GMC Sierra, the Toyota Tacoma, those are some of the highest selling vehicles in the United States.  Most of them have mileage numbers somewhere around 20, 21 miles a gallon.

     

    And so one of the topics we get into this year is what should the United States do to try to convince some of these people to switch to electric vehicles, assuming that you can try to overcome whatever range anxiety people may have, particularly if they use those cars for work.  I mean, if you use your car for work, there’s an extra burden because you can’t simply forget to charge it.  Like I can forget to charge my car and I can find other ways of getting to work or doing the things I want to do.  But if you use your car for work, it’s much harder to do that. 

     

    And the US has a population of intense gasoline super-users that they’re called. In other words, the top 10% of all the drivers in the United States burn a third of all the gasoline, and more than the gasoline burned by the bottom 60% of all drivers.  So you’ve got a bunch of people that own cars that don’t use them very much, and then one-sixth of those people by number burning a third of all the gasoline.  Obviously they’re more likely to drive pickups and SUVs, they live in rural areas, and they drive a lot.  They drive three times more miles than the average driver.

     

    And of course, the challenge is how do you get those people to switch?  Some people will say well, let’s just have higher gasoline taxes, but that’s very unlikely for political reasons.  Even before the Build Back Better bill ran into trouble with resistance in the Senate, polling showed that US voters are not really in favor of gasoline taxes when paying for infrastructure or for other renewable energy objectives, and a carbon tax I think is even further away.  And not only that, at least in Europe, a carbon tax is typically applied to power generation, manufacturing, and aviation, but not to road or maritime transport.

     

    So the issue that we look at, and this is really just a thought exercise more than anything else, is let’s assume that there’s an elderly couple living in Seattle.  They own an energy-efficient 2015 Honda Accord, gets 30 miles a gallon.  They get $ 7,500 to switch to a new EV.  Somebody driving a 20-mile-a-gallon Toyota Tacoma, who drives eight times as much per year in terms of mileage than that couple in Seattle, they get the same $7,500.  

     

    So one of the things we walk through is maybe it would be better, I mean think about what a gasoline tax would do.  A gasoline tax will pose a tax on you to convince you to switch.  Well, why not have a structure, an incentive structure that incents you to switch?  In other words, pay people per gallon of displaced gasoline rather than per vehicle.  ‘Cause right now the way the current structure works, that couple in Seattle is getting something like 70 to $75 a gallon for every gallon of gasoline that is displaced, whereas the Toyota Tacoma driver is only getting $6 a gallon.  So obviously this $7,500 per vehicle is something that is I don’t think maximized in terms of incentivizing switching by the people that the United States apparently has the greatest incentive to convince to switch with the people that are consuming the most of the gasoline.  So anyway, we’ll see if anything happens there.  

     

    The last quick topic for today is you may have seen that metals prices are going up a lot.  And there are some implications here for battery costs for electric vehicles, and specifically batteries that use cobalt, nickel, and aluminum, ‘cause those are the ones where their prices have surged as inventory levels of collapsed relative to demand. 

     

    It turns out not every lithium ion battery in an EV is the same.  There’s three main different types.  Some of them use a decent amount of nickel and cobalt, and some of them, particularly some of the Teslas and some of the Chinese ones don’t use them and are simply reliant on lithium, copper, steel, and iron. Those battery costs haven’t been affected as much, maybe by 4 or $500.  But the other electric battery costs based on our estimates have gone up anywhere between $1,500 and $2,000 since the beginning of 2020.  And there may be some sticker shock coming for the EVs that are reliant on nickel and cobalt. Now you can offset part of that by the fact that if the current gap between gasoline and electricity costs is sustained, your payback period will benefit so you can offset part of that price increase through fuel savings.  

     

    But there are some issues here.  And basically the EV battery supply chain in the long run, we could see shortages that look and feel like the current semiconductor shortage.  90% of the battery supply chain that people are forecasting for 2030 doesn’t really exist yet.  And so the path to higher EV shares may not be that easy, and the path to higher EVs over the next three to five years may not be as quick as the one we’ve seen over the last two, when there were fewer of these metals supply chain issues getting in the way.  So that’s enough for this week.  Tune in next week, and we’ll have a discussion about how people heat their homes.  Thank you very much, bye.

     

    FEMALE VOICE:  Michael Cembalest’s Eye on the Market offers a unique perspective on the economy, current events, markets, and investment portfolios, and is a production of J.P. Morgan Asset and Wealth Management.  Michael Cembalest is the Chairman of Market and Investment Strategy for J.P. Morgan Asset Management and is one of our most renowned and provocative speakers.  For more information, please subscribe to the Eye on the Market by contacting your J.P. Morgan representative.  If you’d like to hear more, please explore episodes on iTunes or on our website.

     

    This podcast is intended for informational purposes only and is a communication on behalf of J.P. Morgan Institutional Investments Incorporated.  Views may not be suitable for all investors and are not intended as personal investment advice or a solicitation or recommendation.  Outlooks and past performance are never guarantees of future results.  This is not investment research.  Please read other important information which can be found at www.JPMorgan.com/disclaimer-EOTM.

     

    [END RECORDING]

    0903c02a82b1d888

    J.P. Morgan Asset Management

    • About us
    • Investment stewardship
    • Privacy policy
    • Cookie policy
    • Binding corporate rules
    • Sitemap
    Opens LinkedIn site in new window
    J.P. Morgan

    • J.P. Morgan
    • JPMorgan Chase
    • Chase

    READ IMPORTANT LEGAL INFORMATION. CLICK HERE >

    The value of investments may go down as well as up and investors may not get back the full amount invested.

    Copyright 2022 JPMorgan Chase & Co. All rights reserved.