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Stargazing.  COVID lockdowns reduced global CO2 emissions to levels last seen over a decade ago. 
While this decline is temporary, there’s still a lesson to be learned: an unsustainable halt in economic 
activity and mobility was needed to make a material dent in global CO2 emissions.   In our tenth 
annual Eye on the Market energy paper, we take a look at when and how renewable energy 
transitions might accomplish the same thing.  A lot of ideas flicker in the distance, but few are capable 
of being scaled and substantially commercialized in the foreseeable future. 

Topics in this year’s paper include limits from de-carbonizing the grid alone; de-carbonization of steel 
and other industrial products; political and physical renewable energy bottlenecks; the scope of 
utility-scale energy storage, reforestation, and carbon sequestration required to make a difference; 
the impact of ride-hailing on emissions, and the never-ending hope for a hydrogen economy.  We 
also review the financial, political and environmental risks to US energy independence, and whether 
a supply shock or stranded asset risk is the primary reason for the lowest oil & gas valuations in 90 
years.  We conclude with an exhibit on Trump and the environment. 

INVESTMENT PRODUCTS ARE: • NOT FDIC INSURED • NOT A DEPOSIT OR OTHER OBLIGATION OF, OR GUARANTEED BY, JPMORGAN CHASE BANK,  
N.A. OR ANY OF ITS AFFILIATES • SUBJECT TO INVESTMENT RISKS, INCLUDING POSSIBLE LOSS OF THE PRINCIPAL AMOUNT INVESTED
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Preface: the large but temporary impact of COVID on global energy consumption 

One of the worst pandemics in 100 years had an understandably large impact on energy consumption given 
widespread adoption of lockdowns and other mobility restrictions.  Estimates of real-time global CO2 emissions 
showed a decline in May to levels last seen over a decade ago.  However, this decline is almost certainly a 
temporary one.  High frequency measures of China coal consumption are already back to pre-pandemic levels, 
the same is true for China oil demand as tankers line up on its eastern ports waiting to discharge oil for Chinese 
refineries, and China air traffic is down only 30% vs January.  In the US, electricity production never fell more 
than 15% y/y during the pandemic, a full rebound is expected for US gasoline consumption by the second half 
of the year, and the EIA expects global liquid fuels consumption to reach pre-COVID levels by June 2021.  Even 
so, there’s an energy lesson to be learned from the pandemic: an unsustainable halt in economic activity and 
mobility was needed to make a material dent in global CO2 emissions.   In our tenth annual energy paper, we 
take a close look at when and how renewable energy transitions might accomplish the same thing. 
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COVID update 

The epicenter of the US pandemic has shifted from the 
Northeast to several hotspot states spanning the Southern 
US from coast to coast.  Until recently, while hotspot 
infections were surging, hospitalizations and deaths were 
not.  Over the last week, hospitalizations in hotspot states 
have been rising as well.  These outcomes are not a 
complete surprise; many hotspot states experienced the 
smallest declines in social distancing, measured by retail 
and restaurant tracking.  For more information on the virus, 
vaccine development and market/economic impacts, see 

our virus analysis portal which can be found here. 

https://www.jpmorgan.com/coronavirusupdates
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Executive Summary 

When I began writing this piece ten years ago, I knew that I needed a technical advisor to shepherd me 
through the real world complexity of energy transitions.  Vaclav Smil is one of the world’s foremost experts 
on such topics, and his guidance and insights have been invaluable.   Over the last decade, Vaclav has 
described renewable energy as the fourth great energy transition (after mastery of fire, a shift from foraging 
to agriculture and domesticated animals, and a shift from biomass and human/animal labor to combustion 
of fossil fuels).  However, he has also stressed the decades required for past energy transitions to unfold, 
illustrated in the first chart.   In our discussions, he has also cautioned against embrace of faddish energy 
solutions that sound great on paper but which are difficult to scale (some are illustrated on this year’s 
cover), and has highlighted how energy efficiency gains are often offset by greater consumption.  An 
example of the latter: a 75% decline since 1960 in jet aircraft fuel consumption per passenger-kilometer 
led to similar declines in ticket prices and a surge in ridership and related aircraft emissions. 
 

   

With that introduction, here’s where we stand now.  While global CO2 intensity has improved (the amount 
of CO2 generated per unit of real economic growth has declined), the absolute level of global CO2 emissions 
keeps going up.  Recent emission increases mostly come from emerging economies, but remember the 
reasons why.  Developed countries have been de-industrializing for 25 years, which has shifted 
carbon-intensive manufacturing of steel, cement, ammonia and plastics to the emerging world.  In other 
words, emerging countries now produce industrial goods they need on top of what they also produce for 
the developed world.  Any discussion of regional emissions and burdens should reflect these realities. 
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To reinforce the point on transfer of production to the developing world, consider coal-fired electricity 
generation.  All the world’s countries except China reduced net coal-fired generation capacity by 8 GW 
from January 2018 to June 2019.  Over the same period, China increased such coal capacity by 43 GW, 
has another 121 GW under construction and is financing a quarter of all new coal projects across Asia.  In 
other words, global reliance on cheap industrial and consumer goods exports from China comes at a 
substantial environmental cost. 

Here’s a simple exercise in CO2 emissions math.  Forget about reducing emissions; let’s just think about 
keeping emissions flat.  Emerging economy emissions increased by 3% p.a. since 2007 while developed 
world emissions declined by 0.7%.  Let’s assume that emerging economy emissions grow at the same pace 
and that the developed world has to emit less.  To keep global emissions flat, the developed world 
would need to reduce emissions by ~4% per year, which is 5x-6x faster than the current pace.  
Whether that would be enough to keep oceans from continuing to heat up is unclear, but it would be a 
move in the right direction. 
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How might developed and developing countries accelerate the pace of de-carbonization?  The 
visual below shows how primary energy is used to generate electricity on the left; and on the right; the 
composition of all energy consumed including electricity, broken down by end-user1.  

 
 

Key takeaways: so far, de-carbonization has mostly taken place on the grid.  The 17% share of electricity 
in global energy consumption limits de-carbonization potential from the grid alone; electricity and de-
carbonization will have to make substantial inroads in industrial use as well.  While technologies are now 
available to achieve partial electrification of certain industrial processes, evidence of such transitions are 
very limited, even in jurisdictions with carbon taxes2.  The electrification of industry must obey 
chemical and physical laws as well as economic ones, which we discuss this year in Section 1. 

On transportation, there’s a plan in many countries for rapid electric vehicle adoption, but the jury is out 
regarding how fast it will occur.  In 2019, the EV share of global light vehicle purchases was 2.5%, while 
in the US the EV share was 1.9% (both shares have risen from ~1.2% in 2017); that sounds more like a 
skirmish than a revolution to me.  

And finally, the issue of carbon sequestration.  After 20 years in development, carbon capture facilities only 
store 0.1% of global emissions every year, and there isn’t even a viable blueprint yet for direct air capture 
or other forms of CO2 mineralization at meaningful scales.  Even something straightforward and beneficial 
like reforestation is often magnified way beyond its actual potential, a topic we discuss this year as well. 

  

                                                 
1 Regionally, there are only modest differences in the charts above; see Appendix Table on page 34.  Importantly, 
electricity represents less than 25% of energy consumption in every major region. 

2 There are roughly 60 carbon pricing initiatives around the world, covering 15% of global GHG emissions (note that 
carbon taxes and cap/trade systems only apply to a subset of a country’s emissions; power and industry are usually 
included, while transport, buildings, waste and agriculture are often not).  Carbon prices per tonne vary widely: $2 
(Japan, Mexico), $18 (California), $30 (EU), $50 (France), $120 (Sweden). 
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Ten energy and de-carbonization one-pagers to share with clients, friends and family.  Topics include the 
pace of renewable energy adoption, electrification of industry, utility-scale energy storage, transmission 
bottlenecks, carbon capture, reforestation, ride-hailing, dietary choices and the “hydrogen economy” 

2. Peak US energy independence?  Pressures on the US shale industry intensify…………………………17 

In 2019 the United States achieved its greatest level of energy independence on record, but financial and 
environmental pressures may bring this independence era to an end 

3. Mountains vs Molehills, 2020: de-carbonization of steel, and deep geothermal energy……………25 

The latest installment in our series deconstructing de-carbonization ideas reported in the press 

4. Oil & gas equity market underperformance: stranded asset risks or supply shock?............................29 

Some believe that stranded asset risks explain the oil & gas sector’s dreadful performance over the last 5 
years.  A closer look suggests that loss of capital discipline and a supply shock are equally responsible 

5. Maiming the Swamp: Trump and the Environment………………………………………………………....33 

The latest tally of Trump administration rollbacks of environmental rules and regulations 

__________________________________________________________________________________________ 

Links to select topics from prior Eye on the Market energy editions 

 Germany and Energiewende:  A dispassionate assessment (2019)

 Wildfires: anthropogenic climate change and risks for utilities in fire-prone areas (2019)

 Electric vehicles: a 2% or a 20% solution? (2018)

 High voltage direct current lines: China leads, US lags (2018)

 The Dream Team rebuttal of the Jacobson “100% renewable electricity by 2050” plan (2018)

 Better safe than sorry: sea level rise, coastal exposure and flood mitigation (2018)

 Hydraulic fracturing: the latest from the EPA and some conflicting views from its Advisory Board (2017)

 Forest biomass: not as green as you might think (2017)

 The myth of carbon-free college campuses (2017)

 Distributed solar power and utility billing changes which increase the cost (2016)

 US hydropower: how much potential for expansion? (2016)

 Nuclear power: skyrocketing costs in the developed world (2014 and 2015)

With that background, here are the topics discussed in this year’s Eye on the Market 
energy paper on its tenth anniversary. 

Table of Contents 
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https://www.jpmorgan.com/directdoc/MountainsAndMolehills_energiewende_am.pdf
https://www.jpmorgan.com/directdoc/MountainsAndMolehills_wildfires_am.pdf
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https://www.jpmorgan.com/directdoc/PascalsWager_electricvehicles_am.pdf
https://www.jpmorgan.com/directdoc/PascalsWager_hvdc_am.pdf
https://www.jpmorgan.com/directdoc/PascalsWager_jacobsonrebuttal_am.pdf
https://www.jpmorgan.com/directdoc/PascalsWager_floodremediation_am.pdf
https://www.jpmorgan.com/directdoc/ManyRiversToCross_hydraulic_fracturing_am.pdf
https://www.jpmorgan.com/directdoc/ManyRiversToCross_biomass_am.pdf
https://www.jpmorgan.com/directdoc/ManyRiversToCross_college_am.pdf
https://www.jpmorgan.com/directdoc/SentimentalJourney-UtilitiesDistributedSolar_AMV.pdf
https://www.jpmorgan.com/directdoc/SentimentalJourney-Hydropower_AMV.pdf
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[1] The Ten Energy Commandments: on energy and de-carbonization 

These have been useful in discussions with friends/family, but the conversations are not always easy. 

[i] Thou shalt not conflate the speed of wind and solar cost declines with the speed of de-carbonization 

The world uses fossil fuels for 85% of its primary energy. The IEA expects this figure to continue to decline, 
fueled in part by Big Oil companies that are becoming Big Energy companies, investing as much as 15% 
of their capital spending on renewables in 2021.  In 2021, renewable capacity is for the first time expected 
to garner more capital spending than upstream oil & gas.  This process is influenced by diverging costs of 
capital: 3%-5% for solar and wind, 10%-15% for natural gas, and up to 20% for oil projects3. 

However, the IEA still projects that 70% of global primary energy consumption may be met via fossil fuels 
in 2040.  Why don’t rapid wind and solar price declines translate into faster rates of de-carbonization?   As 
discussed in the Executive Summary, electricity accounts for less than 25% of primary energy consumption, 
which is almost exclusively where wind and solar are used; transportation and industrial uses are harder to 
de-carbonize; and even within the grid, transmission costs and politics are large obstacles (see [iv]).  

 

  

                                                 
3 Source: “Carbonomics: The Future of Energy in the Age of Climate Change”, Michele Della Vigna, Goldman Sachs, 
December 2019.  Michele and his team lay out a thesis of substantial carbon abatement and sequestration driven by 
carbon taxes.  I am less sure what abatement prices would be for technologies that have not been commercially scaled, 
and believe that for more established technologies (electric buses, battery storage, biofuels, heat pumps), switching 
costs are often underestimated.   But it’s an interesting read, with a different point of view than mine. 
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[ii] Thou shalt pay a heavy price to electrify industry, when it can be done at all 

As illustrated above, the industrial sector is the largest fossil fuel end-user.  Could some industrial processes 
be electrified to eventually use more renewable energy as the grid is de-carbonized?  Examples include 
sectors which use fossil fuels primarily for “process heat” (see table).   However, even for sectors with high 
potential for electrification, it could be an expensive transition.  In addition to upfront switching costs, 
industrial companies would face costs per unit of energy that are 3x-6x higher for electricity compared 
to the cost of direct natural gas combustion.   Electric heating efficiency gains vs natural gas could 
offset part of the cost, but not all of it.  A carbon tax would change these dynamics; it remains to be seen 
if countries will adopt them at levels required to engineer faster transitions. 

      
 

Sectors such as chemicals, pulp/paper and food take advantage of combustion waste heat for power 
(“CHP: combined heat and power”).  They are harder to electrify since producers would need to then 
purchase the part of their energy needs previously obtained at little to no incremental cost, or redesign the 
entire process.  Sectors such as glass, brick and cement require temperatures in excess of 1400°C, and are 
also harder to electrify since they are non-metallic, non-conductive solids. 

The four industrial pillars of modern society are steel, cement, ammonia (for fertilizer) and plastics; each 
relies on fossil fuels as raw materials and/or for process heat at very high temperatures.  Production of 
these pillars is expected to keep rising, though at a slower pace than during China’s industrialization era. 

    
 

  

Industrial sectors with "high" potential for electrification

Sector

Heat 

requirement HVAC

Process 

Heat CHP

Primary metals excl. steel 1200°C 6% 75% 7%

Fabricated metal 430°C-680°C 20% 61% 7%

Machinery 730°C 46% 39% 4%

Secondary steel 1425°C-1540°C 4% 87% 0%

Wood products 180°C 10% 50% 14%

Vehicle parts (drying) 150°C 31% 33% 12%

Plastics and rubber 260°C 20% 33% 24%

Source: LBNL, "Electrification of buildings and industry ", March 2018

CHP refers to "combined heat and pow er", a process by w hich w aste heat 

from combustion provides additional pow er.  Sectors above have low  CHP 

shares; sectors w ith higher CHP shares are harder to electrify.
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Industrial use of fossil fuels to generate process heat

Construction materials (cement, bricks, tiles, glass, kiln-dried timber)
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Product 2000

2000-2018 

CAGR 2018

2018-2050 

CAGR E 2050 E

Steel 848 4.3% 1,817 0.6% 2,170

Cement 1,660 5.2% 4,100 0.4% 4,682

Ammonia 132 1.5% 171 1.6% 281

Plastics 190 3.6% 359 2.6% 818

Global production  (million tonnes)

Source: Energy Transitions Commission, USGS, World Steel Association, 

PlasticsEurope. 2019. CAGR = compound annual growth rate.



 

 
9 

[iii] Thou shalt toil mightily to store energy that you produce 

Some de-carbonization proposals for the grid entail substantial over-building of wind and solar power with 
the goal of storing excess electricity generation to draw upon later, allowing natural gas peaker plants to 
eventually be retired.  However, long-term utility-scale energy storage via electrochemical batteries is an 
industry that is still in its infancy.  Less than 1% of US electricity generation was stored in 2019, and 
almost all of this storage occurred in decades-old pumped hydro facilities (see below) rather than 
in batteries.  A much larger storage buildout would be needed to displace natural gas peaker plant 
generation, which is currently 10x the amount of stored-and-then-dispatched electricity.  There are plenty 
of “hockey stick” forecasts for electrochemical battery deployment, as there were for electric vehicles a 
decade ago and which turned out to be way too high.  Due to the complexities around reimbursement 
and cost recovery allowances for utilities that invest in storage, some battery storage forecasts are likely to 
be too high as well. 

 
 

 
Seneca pumped storage and hydroelectric facility, Warren County, Pennsylvania 
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[iv] Thou shalt confront thy neighbor regarding his NIMBY policy on renewable energy deployment 

Lawrence Berkeley National Labs recently released a study of renewable transmission costs 1

4 in light of the 
distance from many wind and solar projects to urban demand centers.  The chart below shows levelized 
electricity generation costs in the blue bars, plus estimates of transmission interconnection costs and “bulk” 
long-distance transmission costs (the latter only for wind and solar, since the majority of bulk infrastructure 
for natural gas already exists).   A renewable energy future must contend with these incremental costs, but 
that might not be the hardest part…there’s also the politics, as explained below.   Like the US, Germany 
is also struggling with cost and political obstacles in bringing power from its northern wind sites to southern 
population centers, and already has the highest electricity costs in Europe. 

   

“No Hampshire”.  The proposed 1 GW Northern Pass transmission line connecting Hydro-Quebec to 
Southern New England was supported by Massachusetts regulators and its Department of Energy 
Resources to reduce reliance on fossil fuels and use hydropower instead.  However, a New Hampshire siting 

committee unanimously rejected the proposal since it worried that the 192-mile transmission line would 
disrupt streets and harm tourism. Concessions by the project group to bury 52 miles of the route and set 
aside 5,000 acres of preservation/recreation land were insufficient to change the outcome.   In July 2019, 
the New Hampshire Supreme Court rejected the proposal. The grid regulator ISO New England warned 
that the region's power system may soon be unable to meet electricity demand and maintain 
reliability without rolling blackouts or controlled outages (see box above).  According to the IPCC, 
lifetime hydropower CO2 emissions are 5% of natural gas emissions, yet some opponents of the Northern 
Pass Project still cited its emissions as a reason for rejecting it. 

 

  
 
 

  

                                                 
4 “Improving estimates of transmission capital costs for utility-scale wind and solar projects to inform renewable 

energy policy”, Energy Policy, Gorman, Mills and Wiser (LBNL), December 2019. 
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Operational Fuel Security Analysis 
ISO New England, January 2018 

“Energy shortfalls due to inadequate fuel would occur 
with almost every fuel-mix scenario in winter 
2024/2025, requiring frequent use of emergency 
actions to keep power flowing and protect the grid. 
Emergency actions that would be visible to the public 
range from requests for energy conservation to load 
shedding (also known as rolling blackouts or controlled 
outages that disconnect blocks of customers 
sequentially)…The study results suggest that New 
England could be headed for significant levels of 
emergency actions, particularly during major fuel or 
resource outages.” 
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[v] Thou shalt not perpetuate false narratives on carbon capture and storage (CCS) 

Despite almost 20 years of endless hype, by the end of 2019, CCS facilities captured and stored just 0.1% 
of global CO2 emissions. Put aside issues of cost overruns, failures of bellwether projects, the US Dep’t of 
Energy withdrawing support for large projects, cancellations in Europe, legal uncertainties about liability 
and the ~30% energy drag on coal facilities required to perform CCS in the first place.  Let’s assume that 
all of these obstacles are solved via innovation and legislation.   

The bigger problem is the scope required to make a difference.  Global CO2 emissions from fossil 
fuels were ~33 bn metric tons in 2019.  To store just 15% of this amount (5 bn metric tons), a CCS 
compression, transportation and storage industry would have to handle 6 bn cubic meters of CO2 every 
year by volume.  How much is that?  For context, that’s more than the 5 bn cubic meters of oil that’s 
produced, transported and refined each year around the globe.  In other words, CCS infrastructure 
would have to be even greater than the one used for the world’s annual oil consumption just to 
sequester 15% of global emissions.  There are applications where CCS makes sense (enhanced oil 
recovery and small amounts of commercial CO2 demand).   But as a big picture solution to CO2 emissions, 
CCS buildout requirements are daunting. 

     
 

What about carbon mineralization?  

Carbon mineralization is an alternative form of carbon capture and storage in which carbon dioxide, rather 
than being stored as a compressed gas underground, reacts with certain rocks (magnesite, basalt, etc) and 
is permanently mineralized.  In ex-situ versions of this idea, billions of tons of calcite or magnesite would 
need to be mined each year even if just a small amount of annual CO2 emissions from fossil fuel combustion 
were removed from the atmosphere (to mineralize 15% of global CO2 emissions, more magnesite would 
need to be mined every year than annual global mining of coal and iron combined5).  The materials handling 
costs would be enormous, and efforts to accelerate the chemical reaction vs its natural rate have been very 
challenging.  The in-situ version of the idea involves injection of CO2 (mixed in water) into basalt rocks, 
and in which the carbon mineralization reaction can occur in just a year or two6.   However, while you 
don’t have to mine and move rocks in this version, you do need to move the CO2 to where the rocks are… 
which brings us back to the chart above on the need for a massive build-out of carbon capture 
infrastructure (pipelines, compression, storage etc) to make even a small difference. 
 

  

                                                 
5 “Carbon Sequestration via Mineral Carbonation: Overview and Assessment”, Howard Herzog, MIT. 
6 Read about Iceland’s CarbFix2 project if you want to learn more. 
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[vi] Thou shalt replenish the earth with trees, but not overestimate their impact 

US forests comprise roughly 750 million acres, which is one third of all US land area (including Alaska and 
Hawaii).  This amount of forest acreage has not changed much over the last 100 years, and offsets ~10% 
of annual US GHG emissions each year.  Reforesting areas cleared due to wildfires/insect outbreaks and 
planting trees in previously unforested areas (“afforestation”) will help, but be realistic about the achievable 

benefits.  Assuming 2.5 metric tons of CO2 sequestered per year per acre of forest7, ~130 million acres 
would have to be planted to offset another 5% of US GHG emissions, bringing forested land area back to 
the level it was in 1850 (despite a 6-fold increase in US population since then).  Reforesting that many acres 
of private and public land would be a major undertaking; as shown below, the US Forest Service has been 

reforesting just over 100 thousand acres per year, which is three orders of magnitude smaller. 

Remember as well that some amount of reforestation is needed just to offset acreage lost to (a) aging US 
forests which absorb less carbon over time, (b) CO2 released from wildfires, which has averaged 60 - 80 
million metric tons per year since 2013, and (c) the impact of severe hurricanes, one example being 
Hurricane Michael which destroyed 3 million acres of trees in Florida in 2018. 

 
 

      

  

                                                 
7 Obviously depends on the species and location; triangulated from Journal of Forestry, EPA and USDA reports. 
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[vii] Thou shalt not make unto thee graven images of a hydrogen economy…yet 

The “green hydrogen” economy is based on the notion that hydrogen is a fuel that can be used to generate 
heat and power; that electrolysis can split water into its component molecules to produce oxygen and 
hydrogen; and that renewable electricity can be used to power the electrolysis required.  However, due to 
the high costs of electrolysis, 95% of commercially available hydrogen is currently produced via steam 
methane reformation (SMR) of fossil fuels.  Might that change one day, so that renewable-driven 
electrolysis could create “green” hydrogen? 

 In February of this year, the US Department of Energy released a study8 on the potential for hydrogen 
production using electrolysis instead of SMR.  They estimated possible future hydrogen costs by (a) 
varying the price of electricity, which is by far the largest component of electrolysis costs, and (b) 
assuming 30%-60% declines in upfront electrolyzer capital costs as production increases 

 DoE future cost estimates range from $4.5 - $5.0 per kg of hydrogen assuming electricity costs of 7-
8 cents per kWh, and assuming a large decline in electrolyzer capital costs.  This would still be well 
above current state-of-the-art SMR hydrogen costs of just $1.15 per kg using current nat gas prices 

 If electricity costs fell to 3 cents per kWh (i.e., in the range of current wind and solar PPAs but without 
incorporating utility costs for transmission infrastructure), the DoE estimated that hydrogen production 
costs could fall to $2.0 - $2.5 per kg of hydrogen, which is closer to but still above current SMR costs.  
This scenario would require co-located renewable energy dedicated to hydrogen production 

 Bottom line: in the absence of a substantial carbon tax, further electricity and capital cost declines are 
required for green hydrogen costs to converge with fossil-fuel hydrogen costs9.  In addition, to 
meaningfully impact energy consumption, existing turbines, engines, heating systems and other 
industrial equipment that now rely on natural gas would need to be replaced or upgraded to rely on 
hydrogen instead.  That’s another real-life obstacle that hockey stick forecasts often fail to incorporate 

  

                                                 
8 DoE base case: electrolyzer capital costs decline by 30%-60% to $460 per kW ($342 for the electrolyzer stack and 

the rest for storage, compression and other auxiliary systems required).  Source: “Hydrogen Production Cost From 
PEM Electrolysis”, US Department of Energy, David Peterson et al, February 2020. 
9 A 2019 hydrogen analysis from IRENA came to conclusions that were similar to the US DoE.  For green 
hydrogen to become competitive with SMR hydrogen, IRENA estimates that upfront capital costs would need to fall 
by 75%, and that electricity costs would need to be around 2 cents per kWh. 
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[viii] Thou shalt not equate “emissions foregone” and “emissions sequestered” 

Voluntary Carbon Markets refer to companies or individuals purchasing voluntary emission reduction credits, 
also known as VERs or “carbon offsets”.   Corporate or individual purchasers of VERs seek to offset their own 
emissions, and are typically different from those purchasing offsets as part of a regulated cap and trade 
system.  What is an offset exactly?  Well, that’s a good question.  Technically, it’s a credit you buy to offset a 
metric ton of CO2 equivalent that you either emitted (or might emit in the future) by driving, flying etc.  The 
offset would presumably render you “carbon neutral”.    However… 

There are two kinds of VERs.  Some are derived from projects that actually sequester (i.e., remove) carbon from 
the atmosphere on a long term basis, while others are based on projects that avoid or prevent growth in 
future GHG emissions. 

Currently viable versions of sequestration include 
forestry projects and related efforts (restoration of peat 
swamps in Indonesia, for example).  Forestry carbon 
offsets are usually granted by accrediting agencies only 
when they occur and are verified, which takes time given 
how long it takes for certain species to grow, and given 
pest and wildfire risk.  Forestry projects are also subject 
to sovereign risk in emerging countries where they’re 
often based; some UN reforestation “REDD” projects 
were reportedly compromised when trees were 
harvested despite payments made to protect them, with 
little accountability for the parties involved.  Another 
challenge: local communities in emerging countries tend 
to prefer tree species that are valued for construction 
and furniture use, and are less welcoming of native 
faster-growing species with less perceived utility.  Furthermore, exotic non-native species may have faster growth 
rates, but threaten biodiversity and bring risk of unintended ecological consequences10.  

The second type (mitigation) includes capture of methane from landfills, dairy farms and coal mines; managing 
nitrogen fertilizer on farms; and switching to more energy efficient cookstoves.  To reiterate, these projects do 
not sequester carbon; they slow the rate at which emissions would otherwise have grown in the future. 

The size of the VER market is small.   In 2018, only $300 million of VERs were purchased globally (a small 
fraction of regulated carbon trading markets).  VER projects funded in 2018 offset 98 million tons of CO2, which 
was 0.3% of global CO2 emissions.  It will be interesting to see if the VER market can accommodate growing 
interest from airlines11; air travel accounts for 2.5% of all CO2 emissions, which is much larger than 2018 VER 
project sequestration.  There’s no reason why VER projects cannot expand, but oversight will be critical to 
maintain additionality, ownership, permanence and “no leakage” standards.   

VERs traded at ~$3.5 per metric ton in 2017 and 2018, compared to $50 that the Environmental Defense Fund 
cites as the true social cost of carbon, and compared to the $75 price that the IMF estimates as necessary to 
accelerate energy transitions.  In other words, VERs are inexpensive for purchasers but also reflect a world that 
has not incorporated the true cost of carbon into pricing mechanisms.   

                                                 
10 “Choosing species for reforestation in diverse forest communities: social preference versus ecological suitability”, 
Chechina and Hamann, University of Alberta, 2015.   
11 In 2019, Shell began offering some customers nature-based carbon credits to offset emissions generated by its 
share of oil extraction, refining, distribution and use.  BA and Air France announced they will offset emissions from 
domestic flights, while EasyJet announced it will offset all emissions from use of jet fuels immediately.  
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[ix] Thou shalt not falsely extol the environmental benefits of ride-hailing services 

What’s the impact of ride-hailing services on vehicle miles traveled and GHG emissions?  The answer from 
several recent studies is straightforward: after accounting for people who would have taken public 
transport, biked or walked instead, and those who would not have traveled at all, there’s a substantial 
net increase in estimated vehicle miles traveled and emissions from ride-sharing, possibly as large 
as 60%-80% compared to a world with no ride-sharing at all12.  Part of the issue: driver “dead-heading”, 
which refers to the time/distance ride-share drivers travel while waiting for passengers and commuting. 

The charts tell the story: the surge in rides nationally and in NYC after the onset of ride-hailing apps; the 
increased emissions per trip-mile of ride-hailing trips; and estimates of ride-hailing miles traveled compared 
with what they replaced by trip category.  As per the third chart, ride-hailing is only estimated to reduce 
emissions in a scenario of electric ride-hailing cars, further de-carbonization of the grid and rider pooling13.  
California and the City of Chicago have begun to implement penalties and incentives to promote ride-
hailing electrification, rider pooling and use of mass transit (which in many cities has suffered declines in 
ridership).  But the convenience of personalized ride-hailing may make it difficult to dislodge. 

  

  

  

                                                 
12 Sources for this section include:  

“Ride-Hailing Climate Risks”, Union of Concerned Scientists, 2020 

“The impact of ride‑hailing on vehicle miles traveled”, National Renewable Energy Laboratory, September 2018 

“The New Automobility: Lyft, Uber and the Future of American Cities”, Schaller Consulting, 2018 
13 Even in California, only 1% of ride-hailing vehicles were in EVs in 2018.  Around 15% of ride-hailing trips are pooled. 
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[x] Thou shalt read Shakespeare: “The fault lies not in our stars, but in ourselves” 

There is some irony to Americans being fascinated by the uncertain premise of geologic carbon storage 
and carbon mineralization at meaningful scales.   Why is that?  Americans emit close to the highest levels 
of CO2 per capita on the planet, and could more readily achieve emissions reductions through behavioral 
changes rather than through carbon capture schemes.  The table shows three totally hypothetical 
scenarios of behavior switching (cars, housing and food) that in aggregate could substantially reduce US 
emissions if they all took place as described. 

The table is not meant to suggest that such transitions would be easy; they would require large penalties 
or incentives, and habits are very hard to change.   But such changes, as well as other ones dealing with 
consumption, heating/cooling temperature preferences and transportation patterns, could be a more 
reliable way for the US to reduce emissions in the near term.  

 

 

 

  

Topic Scenario assumptions

Annual 

emissions 

decline 

(MMT)

US mileage 27.4 mpg

Developed world mileage 41 mpg

US miles driven per capita 16,000

OECD Europe miles driven per capita 8,000

CO2 emissions per gallon of gasoline 8,887 grams

Number of US passenger vehicles 240,000,000

Affects 50 million US housing units above: 2,000 sq ft

Largest average dwelling sizes in Europe: 1,400 sq ft

   (Belgium, Denmark, Netherlands, Sw itzerland)

CO2 intensity of nat gas, propane and fuel oil 53 - 73 kg of CO2 / MM btu

CO2 intensity of US electricity generation 0.99 pounds of CO2 / kWh

* Emissions results from this scenario were similar to a no-beef diet partially offset with added amounts of chicken, fish and pork.

Sources: EIA, EPA, Bureau of Transportation, ICCT, IEA, Eurostat, USDA, University of Michigan, Carnegie Mellon (EIO-LCA)

18% of total annual US emissions

Key assumptions

Emissions based on University of Michigan Center for Sustainable Systems, 

Scenario #3, Feb 2020, "Implications of future US diet scenarios on GHG 

emissions", Martin Heller et al

Cars

210Food

925Total annual CO2 savings

92

US home sizes converge to the 

upper end of European averages, 

reducing consumption of electricity, 

natural gas, propane and fuel oil

Housing

US consumption of animal-based 

foods decreases by 50%, 

substituted with plant-based foods*

624

US drivers transition to cars with 

developed world gas mileage, and 

reduce half the US miles driven per 

capita gap vs Europe
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[2] Peak US energy independence?  Roadblocks in the Shale Revolution 

Whether the US energy deficit is measured in dollar terms or in energy terms, US reliance on foreign energy 

supplies ended 2019 at its lowest level in 60 years3F

14.  Nixon and his successors could only dream of this 

kind of energy independence, which was a constant US policy objective for decades. 

  

However, US energy independence is highly reliant on hydraulic fracturing: between 65%-80% 

of all US natural gas, crude oil and natural gas liquid production was derived from fracturing operations in 

2019.  As a result, hydraulic fracturing accounted for 40% of all US primary energy consumption as well.  

Looking ahead, the independence shown above may be at risk due to financial and environmental factors. 

   
 

 

  

                                                 
14 Here’s an illustrative statistic: US net oil imports as a % of US oil consumption declined from a peak of 60% in 
2006 to 14% in 2018, the lowest level since 1958. 
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Financial pressures 

Even before the COVID pandemic, investing in the US shale revolution was something of a train wreck.  

Let’s focus on a 29-stock universe15 of companies associated with the US shale boom from 2010 to 2019: 

 As a group, their aggregate free cash flow was negative in every year  

 Ten of these companies never experienced a single year of positive cash flow 

 Another thirteen companies only experienced positive free cash flow in 3 or fewer years out of 10 

Note that this all happened despite 8%-9% of US natural gas production now being exported via LNG 

terminals, which was supposed to be a catalyst for higher US natural gas prices (it wasn’t).  This poor 

financial performance led to a collapse in shale sector stock prices, an exodus of capital and a spike in 

bankruptcies.  Debt and equity issuance by E&P companies fell by 60% from 2014 to 2019.  By the end of 

2019, the industry shake-out started to translate into better relative equity performance for the S&P 500 

E&P sector…and then COVID hit, after which the relative gains were lost again (red circle, third chart).  Due 

to COVID, leverage of US independent producers has now doubled with plenty of debt coming due every 

year from 2021 to 202516.  The survivors are likely to have to rely on internally generated cash flow instead. 

  
 

   
  

                                                 
15 The 29 companies in our shale revolution universe: Anadarko, Antero, Apache, Cabot, Callon, Carrizo, Chesapeake, 
Cimarex, Concho, Continental, Denbury, Diamondback, EOG, EQT, Hess, Laredo, Marathon, Matador, Murphy, Noble, 
Oasis, PDC, Pioneer, QEP, Range, SM, Southwestern, Whiting and WPX. 
16 “Global energy analyzer: Supercycle on the Horizon II”, C.Malek, JP Morgan European Equity Research, June 2020 
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The shale boom has been characterized by rapid growth in production and by rapid decline rates 

of individual wells (the first chart shows illustrative decline rates of existing wells).  As long as the shale 

industry is growing, new well production replaces lost production of aging wells.  But at a time of scarcer 

capital, new wells might not be financed and constructed as fast.  Even before COVID (dotted vertical 

line in the charts below), the industry shake-out was seen in declining Permian Basin production growth, 

in a falling oil and gas rig count, and in declining E&P capital spending expectations. 

   
 

  
 

We expect some of the “base” decline from existing shale wells to be replaced by new wells; the 
harder question is by how much.  Operating and development costs have declined, well productivity 
has improved and there are large sunk costs in Appalachia (i.e., lease agreement options) that may compel 
many producers to keep drilling irrespective of lifecycle economics.   Furthermore, if the onshore shale 
boom fades, we might see a revival of US offshore oil & gas production in the Gulf of Mexico.  US oil 
production is also very sensitive to price: $55-$65 oil prices could add 1-3 mm bpd to US production when 
compared with JP Morgan’s $40 base case WTI price forecast.  Even so, the US may now be close to 
peak oil and natural gas production and peak energy independence given financial pressures on 
the shale industry, and environmental pressures discussed next. 
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Environmental pressures 

The word “hydro” is part of “hydraulic fracturing” for a reason.  Water requirements for fractured wells 

are 8x-10x higher than for conventionally drilled wells.  Water demand rose as the shale revolution 

unfolded, with only a modest decline from peak levels in 2014 to 2016.  There are a lot of factors driving 

water demand, so it’s important to distinguish them.  Water demand is a function of the number of wells 

drilled, and the lateral length of wells which increased by 20%-30% from 2011 to 2016.  So, some degree 

of increased water demand simply reflects more wells and longer distances from the wellhead. 

   
 

Since changing well numbers and wellhead distances affect water demand levels, our preferred measure 
of shale industry water intensity is “liters of water per gigajoule of energy”.  As shown below, water 
intensity rose for many shale oil locations from 2011 to 2016, and also for shale gas wells in the Permian17. 

  
  

                                                 
17 While most electricity generation doesn’t take place in water-stressed areas, ~50% of natural gas extraction 
does occur in water-stressed areas.  Natural gas water usage is at least less intense than for coal.  From 2013 to 
2016, for every MWh of electricity generated with natural gas instead of from coal, there was a reduction of 1 m3 in 
water consumption and 40 m3 in water withdrawal.  In terms of toxicity, however, it’s a toss-up between produced 
water from fracturing and coal mine water drainage.  The former is often toxic (see next page), and so is the 
latter: many coal mines are abandoned and not sealed, so they fill up with rain and continuously discharge acidic, 
polluted water.  Furthermore, storage of coal combustion residuals in coal ash ponds can leach heavy metals and 
radioactive material into groundwater. Source: Environmental Research Letters, Kondash and Vengosh, Dec 2019. 
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Water demand is only half the story regarding environmental issues.  After the fracturing process 
is over, operators are left with flowback and produced (FP) wastewater that has to be dealt with.  
“Flowback” refers to return of water originally injected into the well, while “produced” water refers to 
water that exists naturally in these formations and which surfaces along with high concentrations of 
dissolved inorganic and sometimes radioactive substances.  The chart on the left shows FP water trends, 
while the chart on the right shows management practices used to dispose of it.  Of the two wastewater 
types, produced water accounts for ~90% of total volume, which may limit possibilities for beneficial reuse. 

The FP water challenge is complex; in some locations, volumes are higher but reinjection is easier/cheaper 
for geological reasons.  In other locations, FP volumes are lower but reinjection is more complex and 
expensive.  While overall FP volumes declined from 2014 to 2016, FP water per well more than doubled 
from 2012 to 2016.  As with overall water demand shown earlier, the Permian is at the epicenter. 

  
 

It is beyond the scope of this paper to review all the environmental consequences of the shale industry’s 
water demand and wastewater treatment needs.  The Groundwater Protection Council produced a 300-
page report in 2018 that goes through some specifics6F

18, and we also covered the EPA’s fracturing study 
(and objections from the EPA’s own Science Advisory Board) in 2017.  The debates are intense; as water 
scarcity becomes more of an issue and as states deal with environmental impacts of fracturing, its cost 
and complexity may rise in the handful of states that account for 90% of shale oil and gas 
production.  Wood Mackenzie estimated that water management costs could add $6 to the cost of 
producing a barrel of oil, possibly curbing future Permian oil supply by 400,000 barrels per day by 2025.19 

  

                                                 
18 GWPC 2019 “Produced Water Report: Regulations, Current Practices and Research Needs” 

19 Wood Mackenzie press release, “Permian produced water: slowly extinguishing a roaring basin?” June 11, 2018. 
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Possible consequences for US oil & gas from a Biden presidency and a Democratic sweep20 

Federal government could block new oil & gas leases on Federal lands 

 A halt to new offshore and onshore leases on Federal land in Permian and Bakken basins would be 
likely, while it’s less likely that existing Federal leases would be rescinded.    Oil production on Federal 
lands is ~25% of total production, and offshore Gulf production is ~10% of total production.   

Climate-related financial regulation could further restrict the industry’s access to capital 

 Publicly-traded energy companies are likely to be required to disclose climate risks, and banks may be 
required to incorporate climate risks in stress test capital ratios.  It is less likely that financial institutions 
would be subject to energy related portfolio limits, or be forced to divest 

Executive Branch could deny fossil fuel infrastructure projects and/or LNG export permits 

 Biden pledges to evaluate Federal infrastructure projects based on climate pollution potential and GHG 
impact.   Biden originally did not sign the “No Keystone XL” pledge, but now promises to revoke the 
permit.  Other possible outcomes: expand scope of Clean Water Act  

 Biden may use the threat of fossil fuel export bans to extract concessions from the oil & gas industry, 
but so far has resisted calls to declare a climate emergency 

Congress could subject hydraulic fracturing to stricter review and regulation 

 A 2005 bill exempted hydraulic fracturing from being subject to Federal standards set by the 1974 Safe 
Drinking Water Act (the “Halliburton loophole”).  If the exemption were repealed, fracturing would 
require EPA approval, giving the Administration greater discretion to delay or block permits 

  

                                                 
20 The likelihood of passage of some provisions mentioned on this page are based on research by Rapidan, a Maryland-
based energy and political consulting firm. 
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What might US energy dependence look like if financial and environmental pressures constrain 
the US shale industry before substantial de-carbonization of transport and industry takes place?  
From a US geopolitical, military and economic perspective, it’s not a pretty picture.  The first chart 
shows US oil imports by country in 2005, the year of peak US oil imports.  The second two charts show 
proven reserves by country for oil and natural gas.  In essence, these are the countries the US would need 
to rely on for its imported oil & gas needs.  If US energy independence is lost, regaining it through 
renewable energy could take, at the minimum, the rest of my lifetime21. 

 

  

                                                 
21 In the IEA’s “Sustainable Development Scenario”, the US gets much closer to energy independence by 
2030 through large declines in fossil fuel usage.  However, its core assumptions include the following.  You 
can decide whether you consider this scenario in the realm of the possible: 

 US primary energy use declines to 1992 levels despite a 40% population increase from 1992 to 2030 

 solar generation grows by a factor of 5.5x, wind generation grows by a factor of 3x 

 nuclear generation is unchanged (no decommissioning) 

 coal use for power/heat declines by 90% (industrial sector switches to solar thermal and geothermal energy) 

 electric vehicles sales reach 47% from today’s 2% levels 

 oil use declines by 24% due to electric vehicles, and ICE gasoline/diesel mileage per gallon improves by 40% 

 truck CO2 emissions per tonne of freight declines by 33% 

 energy intensity of buildings declines by 30% 
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Section 2 Appendix: no free lunch (the environmental impact of renewable energy) 

While environmental consequences of oil and gas on climate and groundwater systems have been widely 
studied, scientists are only just beginning to assess environmental impacts of a world highly reliant 
on renewable energy instead:  

 A renewable energy future will require massive amounts of cobalt, copper, lithium, graphite, cadmium 
and rare earth elements for solar panels, batteries, electric vehicle motors, wind turbines and fuel cells.  
One study cited increases in materials demand of 87000% for EV batteries, 1000% for wind power, 
and 3000% for solar cells and photovoltaics by the middle of the century 

 Even with modest production of these minerals to-date, their extractive and smelting industries have 
left a legacy in many parts of the world of “environmental degradation, adverse impacts to public 
health and biodiversity damage” (B. Sovacool) 

The renewable waste issues of the future: 

 IRENA estimates that toxic solar panel waste (which contains lead, cadmium and chromium) could rise 
from 250 thousand tonnes in 2016 to 78 million tonnes by 2050 

 By 2030, 11 million tonnes of spent lithium-ion batteries are projected to be discarded, with few 
systems in place to recycle them 

 Fiberglass wind turbine blades are built to withstand hurricane force winds and cannot easily be 
crushed, recycled or repurposed, at least not so far; retired ones mostly end up in landfills, or in Europe, 
burned.  The US might face 720,000 tons of wind turbine blade disposal over the next 20 years 

I have not seen anyone suggest that environmental consequences of a renewable energy future 
would be anywhere near as corrosive on the environment as one based on fossil fuels.  Even so, 
a renewable energy world may be much less “green” than currently perceived. 

Sources:  

“Sustainable minerals and metals for a low-carbon future”, B. Sovacool, Science Magazine, January 2020 

IRENA Solar Photovoltaic Panel End-of-Life Management report, 2016 

World Economic Forum Global Battery Alliance 

“Global metal flows in the renewable energy transition: Exploring the effects of substitutes, technological 
mix and development”, Manberger and Stenqvist, Energy Policy, August 2018  
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[3] Mountains vs Molehills, 2020: de-carbonizing steel production and deep geothermal energy 

Last year, we added a section called “Mountains vs Molehills” to assess the real-world de-carbonization 
potential of new ideas frequently mentioned in the media and on green energy blogs7F.  This year we have 
another installment: de-carbonization of steel production, and ultra-deep geothermal energy. 

Topic #1: De-carbonizing steel production, Bill Gates and concentrated solar power 

The idea for this topic started with an article on a Bill Gates-funded solar power startup and how it could 
“fix” a huge carbon emissions problem8F

22.  The article described a concentrated solar power (CSP) plant 
which reached 1,000°C through the use of reflectors calibrated via artificial intelligence, and how this 
energy could be used to “create steel, cement and petrochemicals” (instead of using fossil fuels).  Ok then.  
Let’s break this down for steel, the largest industrial source of global CO2 emissions. 

 Steel is created two ways: producing it from cast iron made from iron ore and coke (“primary” 
production), or by melting down scrap steel in an electric arc furnace (“secondary” production).  The 
global split is 70% primary and 30% secondary.  While US steel production is more skewed to electric 
arc furnaces (around 70% of US output in 2018), the US only represents 5% of global steel production 

 For secondary production, steel has a melting point of 1,370°C – 1,540°C, so 1,000°C is still a few 
hundred degrees away from what’s needed.  Even so, let’s assume that the new CSP plants reach 
higher temperatures (as some reflector operations have); in that case, secondary steel production could 
be de-carbonized via electricity produced solely via solar/other renewable energy 

 However, given the long lives of structures made from steel, rising demand for steel in Asia and Africa 
where there is little scrap to recycle, and the fact that most scrap steel is already recycled (see chart, 
right), primary steel production is likely to remain the dominant method of creating steel and 
also remain a carbon-intensive activity for the foreseeable future 

    

  

                                                 
22 “A Bill Gates-backed startup wants to fix a huge carbon emissions problem”, CNET, November 19, 2019 
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Source: IEA, "Tracking Industry". May 2019.
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Why is primary steel production so carbon-intensive? As per the table below, the two most carbon-
intensive primary steel production processes are: 

 The conversion of coking coal into coke at temperatures of 1,000°C in coke ovens.   Most emissions in this 
stage result from carbonization of coal at high temperatures (specifically, from combustion of coke oven 
gas that is about 50% methane, carbon monoxide and ethylene).  The conversion process eliminates volatile 
compounds in coal and produces a purer form of more porous carbon  

 The iron-making process, during which iron ore (oxides), coke and limestone are fed into a blast furnace.  
Hot air is blown into the furnace, at which point the coke burns, stripping the oxygen from iron oxide to 
produce carbon monoxide, carbon dioxide and molten “pig” iron.  A small amount of limestone is used as 
a “flux” to absorb impurities 

Some CO2 produced in these stages can be recycled into ammonia and methanol production, but the amounts 
are small relative to overall emissions.  Energy intensity of iron and steel production and its reliance on coal 
hasn’t changed much in recent years.  While some countries like Sweden produce steel more efficiently at 16 
GJ of energy per tonne, they are offset by less efficient producers like China (~20 GJ/t). 

      

As a result, de-carbonization of primary steel production requires new approaches that produce iron 
from its ores without using any coke or natural gas. There are ideas afoot: ArcelorMittal announced a 
demonstration plant to produce steel by using hydrogen instead of coal.  The hydrogen would enable “direct 
reduction” of iron ore (in essence, hydrogen would be used as the reducing agent for iron oxide instead of 
carbon).  The concept is interesting, but… 

 The plant’s initial output of 100,000 tonnes is 0.01% of 2018 global steel production (1.8 bn tonnes) 

 ArcelorMittal first plans to use hydrogen obtained via fossil fuel steam methane reformation (see page 
13) to allow for “economical operation”.  It will only run on “green” hydrogen produced from renewable 
electricity sources when it is “available in sufficient quantities” 

 Bloomberg New Energy Finance often makes exponential growth forecasts for de-carbonization 
technologies of all kinds, and hydrogen-produced steel is no exception: last fall, BNEF estimated that half 
of global steel output could be produced via green hydrogen by 2050! We ran this forecast by a Swedish 
steel industry expert who described it as highly implausible.  Blast furnace steel plants have useful lives of 
50+ years, and it’s rare for them to be replaced beforehand.  Construction of hydrogen reduction plants 
from scratch will take decades, even if the exact design is ready to go…which it isn't.   Sweden has shovels 
in the ground for a demonstration plant to get the iron ore reduction chemistry right (since every iron ore 
can behave differently), and is targeting 2045 for full operation 

  

CO2 emissions, integrated steel-making

Kg of CO 2  emissions per tonne of steel produced

Coal and coking 990

Iron ore sintering 15

Blast furnaces (iron-making) 610

Basic oxygen furnace (steel-making) 85

Total 1700

Source: "Assessment on the energy flow and carbon emissions of integrated 

steelmaking plants", Energy Reports, He et al, January 2017
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Mountain vs Molehill Topic #2: Ultra-deep geothermal energy 

Geothermal energy has been used in hot baths since antiquity, for space heating in Boise, Idaho since 
1892, for virtually all houses in Reykjavik since the 1930s, and for electricity generation since 1904 in 
Larderello, Italy.  Before getting into “ultra-deep” geothermal power, let’s walk through the footprint of 
existing geothermal energy today. 

Geothermal energy has a small presence.  Its output in 2018 was only 0.1% of global primary energy 
consumption, split roughly 50/50 between electricity production and heat (many sources don’t even break 
geothermal out as a separate category, and combine it with things like wave power)9F

23.  Around half a GW 
of new capacity came online in 2018, bringing the global total to 13.3 GW.  Most additions occurred in 
Turkey and Indonesia, with the rest scattered about the US, Africa and Asia.  There are two ways of 
generating electricity by using geothermal energy: binary cycle and dry-steam.  In a binary cycle plant, 
geothermal fluid vaporizes another fluid with a lower boiling point than water that then spins a turbine, 
while in conventional dry-steam/flash plants, geothermal steam is used directly to power the turbine. 

As shown below, the world’s largest geothermal plants have well depths of ~2 kilometers, and access 
reservoirs with average temperatures of 250-300°C. 

   
 

   
 

  

                                                 
23 REN21 Renewables 2019 Global Status Report 
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With that backdrop, let’s discuss “ultra deep” geothermal energy.  At 5-7 kilometers below the surface 
of the earth, there are geothermal reservoirs measured at 400°-500° C and at 200+ bars of atmospheric 
pressure.  In these locations, water exists as “supercritical fluid”.  Such fluids in theory could deliver 5x-10x more 
power than traditional geothermal plants and rival the power derived from nuclear power plants.  If so, the 
increased power could offset some of the increased drilling costs required to access such depths, if they were 
achieved.  The concept has led to press articles such as “Supercharged Geothermal Energy Could Power the 
Planet”, which asserted that “heat contained in the upper three kilometers of the earth’s crust would be enough 
to meet the world’s energy demand thousands of times over”24.  Yes, but….let’s take a closer look.   

The most well-known deep geothermal projects in the world are Iceland Deep Drilling Projects 1 and 225.  
They are still in the exploratory field-test phase since development of valves, coatings, casings and sensors that 
can withstand the intense temperatures and pressures involved, and the corrosive materials surfaced during the 
process, are still ongoing.   

 The first well, IDDP-1, had to be completed in 2009 before reaching supercritical fluid depths since molten 
magma flowed into the well at 2,100 meters.  However, above the magma intrusion, superheated steam at 
452°C and at 40-140 bars of pressure was measured during a 2-year flow test, capable of generating 35 
MW of power (8x-10x higher than a conventional geothermal well).  At the time, IDDP-1 was the hottest 
producing geothermal well in the world.  Eventually, its master valves failed and the superheated steam 
flow had to be quenched with cold water.  The flow was quenched, but the thermal shock caused the well 
casings to buckle beyond repair, and IDDP-1 was abandoned 

 In 2017, the IDDP-2 project team drilled to depths of 4,500 m, reaching a different field that is recharged 
by seawater and which contained supercritical conditions of 600°C and 350 bars of pressure.  This project 
represented the first of its kind in terms of drilling into geothermal reservoir rocks at these extreme 
temperatures.  Flow tests have begun and will be carried out over the next few years, even through IDDP-2 
has already sustained casing damage which could restrict certain development options at deeper levels 

 The ultimate goal of the IDDP project: generate power from supercritical geothermal resources which would 
be used not just in Iceland but in Scotland as well.  The IceLink plan entails a 1,200 km high-voltage 
underwater DC cable to Scotland to interconnect Iceland’s electric grid to those of the UK and beyond.  
Laying such a cable in deep Atlantic waters would be another unprecedented achievement: today’s longest 
underwater HVDC cable is 580 km in shallow waters between Norway and the Netherlands 

In other words, deep geothermal power is in the very early stages of development.  We’re intrigued 
about the concept of deep geothermal as baseload power, but are realistic about the physical materials and 
geological challenges ahead (including risks of seismic activity).  We met with a company that’s trying to solve 
some drilling challenges via an “electric pulse plasma-based drill” designed to reach temperatures of 6,000° C.  
As the plasma drill descends, it would be followed by a continual casing that would conduct water on the way 
down, and supercritical steam on the way back up.  The intense heat from the drill bit would presumably 
vaporize everything in its path, and the company developing it believes that drilling costs would remain linear 
with depth (in contrast to traditional deep drilling techniques whose costs rise geometrically with depth).  
However, its efforts are in their infancy, and their estimates of plasma drilling costs have to be taken with a 
giant grain of salt until proven in more than just early field studies. 

  

                                                 
24 New Scientist.com (a weekly science and technology publication), October 17, 2018 
25 “The IDDP Success Story”, Proceedings of the World Geothermal Congress, Gudmundur Friedleifsson et al, 2020 
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[4] Oil & gas equity market underperformance: stranded asset risks or supply shock? 

Even before COVID, the US oil & gas sector traded at the largest valuation discount vs the market in 

decades, and its performance has been trounced by investments in renewable and other clean energy stock 

benchmarks.  Both developments are illustrated in the first two charts.  The big picture question: did oil & 

gas stocks underperform primarily due to expectations of widespread carbon taxes and billions 

of barrels/BTUs of stranded oil and gas reserves that the world will have little use for anymore?  

Mark Carney from the Bank of England believes this, and estimated that global markets could decline by 

$20 trillion once energy transitions risks are fully recognized by investors26.  And in mid-June of this year, 

British Petroleum wrote off $18 billion in assets, citing both lower near-term oil demand due to the 

coronavirus, and a reduction in BP’s medium-term expectations for oil prices from $70 to $55 per barrel.  

In its announcement of one of the largest industry writedowns in many years, BP also cited the tendency 

for governments to direct COVID stimulus packages toward more climate-friendly initiatives and away from 

anything related to fossil fuels. 

  

 
 

  

                                                 
26 “Firms ignoring climate crisis will go bankrupt, says Mark Carney”, The Guardian.  October 13, 2019. 
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Researchers from UCLA and Simon Fraser University have come to similar conclusions on stranded 

asset risks, at least as it relates to oil & gas stock prices and the impact of additional reserves.  In a 

“stranded asset” world, the more reserves a company finds, the worse off its stock price would be for having 

invested to obtain them.  Using a sample of 679 North American oil firms from 1999 to 2018, they found that 

reserve growth had a negative effect on firm value, and that this negative effect was stronger for producers with 

higher extraction costs27.  When they looked at the details, they found that negative effects were mostly 

due to growth in undeveloped reserves.   Other papers found similar results28: the highest quintile of 

undeveloped reserves led to the weakest stock price performance, an effect which was particularly pronounced 

over the last 5 years.  Finally, companies that spent less on reserve accumulation outperformed, usually since 

they used free cash flow to buy back stock. 

 

  

                                                 
27 “Stranded Fossil Fuel Reserves and Firm Value”, Simon Fraser University and UCLA. November 2019. 
28  Empirical Research Partners, “Energy Bear Market Blues” (December 2019) and “Energy: Buy the 93-year Low” 
(January 2020). 
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Even so, the US supply glut may be just as good an explanation for the dreadful performance of 

US oil & gas stocks.  The US shale revolution began in 2005, after which US oil and gas production almost 

doubled in 13 years.  When measured in energy terms, it was the second largest positive oil and gas 

supply shock in modern history, surpassed only by the USSR production boom from 1969 to 1982.   

And as shown in the second chart, only a small portion of US supply growth was exported; most of it was 

consumed in the US, resulting in a sharp decline in imports. 

    
 

In the earlier section on US energy independence, we illustrated how shale producers and capital providers 
didn’t focus on profitability, and how the shale industry generated year after year of negative cash flow.  
The sector had only just begun to regain profitability when the COVID pandemic hit.  It’s hard to find a 
similar episode of consistently negative free cash flow in the history of US corporate finance: an entire 
decade of a sector foregoing profitability to focus on revenue growth.  It happened with casinos 
and airlines, but not this pervasively across all companies, and not for this long.   
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Which argument is the right one?  It may come down to what happens to oil demand.  Projections of 
peak oil demand incorporate population growth, changes in energy intensity, changes in the energy mix 
and penetration of electric vehicles.  In BP’s “evolving transition” estimates4, global oil consumption persists 
at current levels until 2040.  This scenario assumes that oil consumption rises due to increased prosperity 
in emerging countries, and is offset by policy changes that improve energy efficiency and boost EV 
penetration to 15% globally29.   If this view turns out to be right, 2020 would be too soon for the 
“stranded asset” theory to be the primary driver of oil & gas stock prices; poor industry cash flow 
and the supply glut would be equally sensible explanations for oil & gas underperformance. 

  
 
What could substantiate the stranded asset theory?  The IEA models a “Sustainable Development” 
Scenario (see footnote 19 on page 23 for details) which entails a large decline in primary energy use, and 
substantial increases in renewable energy growth, electric vehicle penetration and energy efficiency.  This 

scenario is designed to limit global warming to 1.8° C relative to the pre-industrial era; energy-related CO2 
emissions are assumed to peak immediately and fall to zero by 2070.  If the world jumps onto this 
trajectory, stranded oil & gas asset risks would be substantial.  As shown in the bottom table, large 
portions of current oil, gas and coal proven reserves30 would be stranded in this scenario.  In contrast, under 
the “Stated Policies” Scenario31, cumulative oil and gas extraction by 2070 is estimated to be greater than 
current proven reserves, so no oil & gas assets would be stranded at all.  Only coal reserves still end up 
being stranded in this case, an outcome which markets are pricing in already. 
 

  

                                                 
29 There are well-known investors who apparently agree with this thesis: Berkshire Hathaway is investing $10 billion 
in Occidental Petroleum to facilitate its acquisition of Anadarko. 
30 While proven reserves are generally estimated by incorporating the commercial viability of extracting them, JP 
Morgan European Equity Research applied higher return thresholds and distinctions on carbon density, and estimated 
that proven reserves could be roughly half of the BP estimates shown above. 
31 The IEA Stated Policies case is not a standstill scenario, and includes current policy intentions and targets that have 
already been announced. 
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Comparing stranded asset risks in IEA scenarios

Proven 

reserves, 2018

Cumul. extraction, 

2019-2070

Stranded 

in 2070

Percent 

stranded

Oil 235,931 265,353 0 0%

Nat gas 169,334 228,266 0 0%

Coal 596,540 197,890 398,650 67%

Proven 

reserves, 2018

Cumul. extraction, 

2019-2070

Stranded 

in 2070

Percent 

stranded

Oil 235,931 137,478 98,454 42%

Nat gas 169,334 125,259 44,075 26%

Coal 596,540 77,560 518,980 87%

Source: BP, IEA, JPM.  Units show n are million tons of oil equivalent. 2019.

Sustainable Development Scenario: large amounts of stranded oil, gas & coal

Stated Policies Scenario: only coal assets stranded
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[5] Maiming the Swamp: Trump and the Environment 

White boxes implemented as of January 2020, shaded boxes pending  

 
 

Sources: Harvard Law School Environmental Regulation Rollback Tracker, Columbia Law School Climate Deregulation 

Tracker, Brookings Institution, Federal Register, Environmental Protection Agency, Interior Department, US Chamber 

of Commerce, NY Times, J.P. Morgan Asset Management.  January 2020. 
  

Elimination of methane reporting requirements 

for oil & gas companies

Rescinded water pollution regulations for 

fracking on Federal lands

Rejection of proposed ban on pesticides 

linked to developmental problems in children

Partial removal of methane flaring limits on 

public lands

Scrapped rule requiring mining companies to 

prove ability to finance clean-up costs

Reversed rule requiring braking system 

upgrades to trains hauling flammable liquids

Transfer of emissions regulatory control from 

Federal Gov't to State Agencies

Reduced importance of GHG emissions in 

FERC pipeline environmental reviews

Ended OSHA program designed to reduce 

risks of lung disease from silicosis

Revoked right of California to set its own 

vehicle emissions limits

Lifted ban on oil and gas drilling in Arctic 

National Wildlife Refuge

Relaxation of rules aimed to improve safety at 

hazardous chemical plants

Loosening of rules regarding toxic emissions 

from industrial polluters

Loosened offshore drilling regulations 

including reduced testing requirement for 

blowout prevention

Scaled back pollution protections for 

tributaries and wetlands

Loosened rules regarding oil refinery 

monitoring of benzene and other pollutants
Lift freeze on coal leases on public lands

Revoked rule preventing mining companies 

from dumping debris into local streams

No more enforcement of rules on 

hydroflourocarbon emissions from air 

conditioners and refrigerators

Streamlined approval process for oil & gas 

drilling in national forests

Withdrew proposed rule to reduce pollution 

from sewage treatment plants

Directed agencies to no longer report social 

cost of carbon

Open marine protected areas in Atlantic and 

Pacific Oceans to commercial fishing

Exempt certain power plants from rules 

limiting toxic discharge into local waterways

Revoked prior Executive Order to reduce 

Federal Gov't GHG emissions

Revoked flood standards for Federal 

infrastructure projects

Extend lifespan of unlined coal ash basins 

leaking contaminants into groundwater

Relaxation of rules requiring repair of oil & gas 

methane leaks

Revoked directive that Federal agencies 

minimize impact on water and wildlife when 

approving development projects

Double time allowed for removal of lead pipes 

from high lead water systems

Weaker fuel economy standards for cars and 

light trucks

Elimination of climate and conservation 

policies at Dep't of Interior

Scrapped rules requiring a doubling of energy 

efficient light bulbs 

Eiminate requirement for new coal plants to 

capture GHG emissions
Weakening of Endangered Species Act

Announced plan to stop funding UN program 

helping lower income countries to reduce 

GHG emissions

Weaker rules regarding coal plant mercury 

emissions

Relaxation of fishing season length and catch 

rate rules

Limit EPA studies that rely on confidential 

patient data that cannot be made public

Limits on community challenges to EPA-

issued pollution permits

Relaxation of salmon protections to free up 

water for farmers

Relax standards requiring more energy 

efficient residential furnaces and commercial 

water heaters
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Appendix Table: key electricity and primary energy statistics by country/region 
 

 
 

Source: JPMAM, US Energy Information Agency “International Energy Outlook”, 2019. 
 

1. Consumed energy is equal to primary energy consumption net of thermal conversion losses in power plants, power plant energy consumption 
and transmission losses 

2. Includes renewable share of electricity generation, plus renewable energy directly used by industrial, transportation and building sectors  

Electricity

Region

Primary energy 

used for electricity

(quad. BTUs)

Electricity 

consumed1 

(quad. BTUs)

Electricity share of 

primary energy

Electricity share of 

consumed energy

Renewable share of 

primary energy used 

for electricity

World 248.4 80.3 13% 18% 31%

US 37.7 12.9 13% 17% 18%

OECD 99.0 33.5 13% 18% 33%

OECD Europe 34.5 11.5 14% 19% 47%

Japan 8.5 3.2 16% 21% 24%

Canada 6.5 1.8 12% 16% 75%

Non OECD 149.4 46.9 12% 17% 30%

China 72.7 23.2 15% 23% 31%

India 15.4 4.4 12% 18% 22%

Brazil 6.1 1.9 11% 15% 88%

Mid East 9.2 3.3 9% 11% 9%

Russia 11.3 3.1 10% 13% 18%

Primary and delivered energy

Region

Total primary 

energy 

(quad. BTUs)

Total consumed 

energy1 

(quad. BTUs)

Consumed energy: 

industrial sector

(quad. BTUs)

Consumed energy: 

transport sector

(quad. BTUs)

Renewable share of 

consumed energy2

World 627.0 453.5 238.7 122.4 11%

US 99.9 75.1 26.4 28.2 7%

OECD 249.8 183.8 75.2 60.1 10%

OECD Europe 83.7 59.4 22.6 18.9 14%

Japan 19.9 15.2 7.7 3.3 9%

Canada 15.9 11.4 6.2 2.8 16%

Non OECD 377.2 269.7 163.4 62.4 11%

China 152.7 101.5 70.6 15.5 10%

India 36.2 25.0 16.3 4.9 14%

Brazil 16.6 12.5 6.7 4.3 36%

Mid East 38.2 31.1 17.7 7.9 1%

Russia 31.6 23.3 13.3 4.8 3%

Fossil fuels

Region
Fossil fuel share of 

elec. generation

Fossil fuel share 

of primary energy

% of fossil fuels 

used for electricity

World 57% 80% 29%

US 60% 82% 27%

OECD 47% 76% 24%

OECD Europe 29% 68% 18%

Japan 70% 84% 36%

Canada 11% 61% 7%

Non OECD 65% 82% 31%

China 65% 81% 38%

India 75% 82% 39%

Brazil 9% 50% 7%

Mid East 90% 97% 22%

Russia 62% 86% 26%
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